Back to Blog
Production Deployment
Performance Optimization

The ONNX Revolution: Deploying AI Audio Models in Production

Bridge the gap between research and production with ONNX Runtime. Learn how to convert, optimize, and deploy Spleeter and Demucs models for real-world applications with up to 2x performance gains.

JewelMusic Engineering Team
February 11, 2025
22 min read
ONNX Runtime Deployment

The Production Gap

You've trained the perfect model, achieved state-of-the-art SDR scores, and impressed stakeholders with demo results. But now comes the real challenge: deploying it in production. The journey from a Python research prototype to a production-ready system serving millions of users is fraught with performance bottlenecks, compatibility issues, and scalability concerns.

🚨 The Research-to-Production Reality Check

Research Environment

  • • Single GPU, unlimited time
  • • Python with full ML ecosystem
  • • Focus on accuracy metrics
  • • Batch processing acceptable

Production Demands

  • • Multi-core CPUs, strict latency SLAs
  • • C++/Rust/Go microservices
  • • Throughput and cost optimization
  • • Real-time processing required

Enter ONNX Runtime—the bridge between these two worlds. It transforms your carefully crafted PyTorch or TensorFlow models into optimized, interoperable inference engines that can run anywhere, from high-throughput servers to resource-constrained edge devices.

ONNX: The Universal Model Format

What is ONNX?

The Open Neural Network Exchange (ONNX) is an open standard for representing machine learning models as computational graphs. Think of it as the "assembly language" of AI models—a common format that different tools and frameworks can understand.

PyTorch/TensorFlow Model → ONNX Graph → ONNX Runtime → Optimized Inference

Interoperability

Train in PyTorch, deploy in C++

Performance

Up to 2x speed improvements

Hardware Support

CPU, GPU, NPU, custom accelerators

Converting Spleeter: From TensorFlow 1.x to ONNX

The TensorFlow 1.x Challenge

Spleeter was built using TensorFlow 1.x, which presents unique challenges for ONNX conversion. The official pre-trained models use legacy operations that don't have direct ONNX equivalents.

⚠️ Common Conversion Issues

  • • Legacy TF ops not supported in tf2onnx
  • • Custom audio preprocessing layers
  • • Incompatible STFT implementations
  • • Dynamic shape handling problems
Solution: The PyTorch Bridge

The most reliable conversion path involves porting Spleeter's architecture to PyTorch, then using PyTorch's robust ONNX export capabilities.

# Step 1: Install conversion tools
pip install torch torchvision onnx onnxruntime
pip install spleeter-pytorch  # Community port

# Step 2: Load PyTorch version
import torch
from spleeter_pytorch import Separator

model = Separator('2stems')
dummy_input = torch.randn(1, 2, 44100 * 10)  # 10 seconds stereo

# Step 3: Export to ONNX
torch.onnx.export(
    model,
    dummy_input,
    "spleeter_2stems.onnx",
    input_names=['mixture'],
    output_names=['vocals', 'accompaniment'],
    dynamic_axes={
        'mixture': {2: 'sequence_length'},
        'vocals': {2: 'sequence_length'},
        'accompaniment': {2: 'sequence_length'}
    }
)

Converting Demucs: Handling Complex Architectures

The STFT Challenge

Demucs (especially v3+ hybrid models) poses a more complex conversion challenge due to its use of STFT/iSTFT operations within the model graph.

🚫 Direct Export Issues

  • • torch.stft() not supported in ONNX opset
  • • Complex number operations limited
  • • Dynamic tensor operations problematic
  • • Custom attention mechanisms in v4

✅ Surgical Extraction Solution

Extract the core neural network components (encoder-decoder) while handling STFT/iSTFT externally in your application code.

Modified Demucs Architecture
# Modified Demucs forward pass for ONNX
class DemucsONNX(nn.Module):
    def __init__(self, original_demucs):
        super().__init__()
        # Extract only the neural network components
        self.encoder = original_demucs.encoder
        self.decoder = original_demucs.decoder
        self.lstm = original_demucs.lstm
        
    def forward(self, mix_spec):
        # Input: pre-computed spectrogram
        # Skip internal STFT operations
        encoded = self.encoder(mix_spec)
        processed = self.lstm(encoded)
        decoded = self.decoder(processed)
        return decoded  # Output: separated spectrograms

# Application-level pipeline
def separate_audio(audio_tensor):
    # External STFT
    mix_spec = torch.stft(audio_tensor, ...)
    
    # ONNX model inference
    separated_specs = onnx_session.run(None, {'input': mix_spec})
    
    # External iSTFT
    separated_audio = [torch.istft(spec, ...) for spec in separated_specs]
    return separated_audio

ONNX Runtime Optimization Techniques

Graph Optimizations

ONNX Runtime applies dozens of graph-level optimizations automatically, transforming your model for maximum efficiency.

Operator Fusion

  • • Conv + BatchNorm + ReLU → Single op
  • • MatMul + Add → Fused GEMM
  • • Reduce memory bandwidth

Memory Optimization

  • • In-place operations where safe
  • • Memory pooling and reuse
  • • Reduced memory fragmentation
Execution Providers

Choose the optimal hardware backend for your deployment environment. Each Execution Provider (EP) is highly optimized for specific hardware.

ProviderHardwareTypical SpeedupBest For
CUDANVIDIA GPU5-20xBatch processing
OpenVINOIntel CPU/GPU2-5xEdge deployment
DirectMLWindows GPU3-8xWindows apps
CoreMLApple Silicon2-10xiOS/macOS apps

Production Deployment Patterns

High-Throughput Server Deployment
// C++ production server example
#include <onnxruntime_cxx_api.h>
#include <vector>
#include <memory>

class AudioSeparationService {
private:
    std::unique_ptr<Ort::Session> session_;
    std::vector<const char*> input_names_;
    std::vector<const char*> output_names_;

public:
    AudioSeparationService(const std::string& model_path) {
        Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "AudioSeparation");
        
        Ort::SessionOptions options;
        options.SetIntraOpNumThreads(8);
        options.SetGraphOptimizationLevel(
            GraphOptimizationLevel::ORT_ENABLE_ALL);
        
        // Use CUDA if available
        Ort::ThrowOnError(
            OrtSessionOptionsAppendExecutionProvider_CUDA(options, 0));
        
        session_ = std::make_unique<Ort::Session>(
            env, model_path.c_str(), options);
    }
    
    std::vector<std::vector<float>> separate(
        const std::vector<float>& audio_data) {
        
        // Create input tensor
        std::vector<int64_t> input_shape = {1, 2, audio_data.size() / 2};
        Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(
            OrtArenaAllocator, OrtMemTypeDefault);
        
        Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
            memory_info, const_cast<float*>(audio_data.data()), 
            audio_data.size(), input_shape.data(), input_shape.size());
        
        // Run inference
        auto output_tensors = session_->Run(
            Ort::RunOptions{nullptr}, 
            input_names_.data(), &input_tensor, 1,
            output_names_.data(), output_names_.size());
        
        // Extract results
        std::vector<std::vector<float>> results;
        for (auto& tensor : output_tensors) {
            float* tensor_data = tensor.GetTensorMutableData<float>();
            size_t tensor_size = tensor.GetTensorTypeAndShapeInfo().GetElementCount();
            results.emplace_back(tensor_data, tensor_data + tensor_size);
        }
        
        return results;
    }
};

Performance Optimizations

  • • Thread pool for parallel inference
  • • Memory-mapped model loading
  • • Batch processing for throughput
  • • Connection pooling

Monitoring & Scaling

  • • Latency and throughput metrics
  • • Auto-scaling based on queue depth
  • • Health checks and graceful shutdown
  • • Model versioning and rollback
Edge & Mobile Deployment

For mobile apps and edge devices, model quantization and pruning are essential for meeting memory and power constraints.

# Quantization for mobile deployment
import onnx
from onnxruntime.quantization import quantize_dynamic, QuantType

# Dynamic quantization - reduces model size by ~75%
quantized_model = quantize_dynamic(
    model_input="demucs_f32.onnx",
    model_output="demucs_int8.onnx",
    weight_type=QuantType.QInt8
)

# For even smaller models, use static quantization
from onnxruntime.quantization import quantize_static, CalibrationDataReader

class AudioCalibrationDataReader(CalibrationDataReader):
    def __init__(self, calibration_dataset):
        self.dataset = calibration_dataset
        self.iter = iter(calibration_dataset)
    
    def get_next(self):
        return next(self.iter, None)

quantize_static(
    model_input="demucs_f32.onnx",
    model_output="demucs_static_int8.onnx",
    calibration_data_reader=AudioCalibrationDataReader(calib_data)
)

📱 Mobile Optimization Results

Model Size: 1.2GB → 300MB

Memory Usage: 2GB → 512MB

Inference Time: 15s → 6s

Battery Impact: -70% drain

Performance Benchmarking

Real-World Performance Gains

Comprehensive benchmarks across different hardware configurations demonstrate ONNX Runtime's performance advantages.

ModelHardwareNative FrameworkONNX RuntimeSpeedup
SpleeterIntel i7 CPU12.3s6.8s1.8x
DemucsIntel i7 CPU45.2s22.1s2.0x
SpleeterRTX 30802.1s1.3s1.6x
DemucsRTX 30808.7s4.9s1.8x

CPU Optimizations

  • • Intel MKL-DNN acceleration
  • • SIMD instruction utilization
  • • Optimal thread scheduling
  • • Cache-friendly memory patterns

GPU Optimizations

  • • Kernel fusion optimizations
  • • Reduced CPU-GPU transfers
  • • Tensor memory pooling
  • • Mixed precision inference

Best Practices & Gotchas

Production Readiness Checklist

✅ Essential Preparations

  • • Validate model accuracy post-conversion
  • • Test with representative data distributions
  • • Measure warm-up time and cache effects
  • • Profile memory usage patterns
  • • Implement proper error handling
  • • Set up monitoring and alerting

⚠️ Common Pitfalls

  • • First inference always slower (JIT compilation)
  • • Dynamic shapes can hurt performance
  • • Quantization may impact quality
  • • Provider selection affects results
  • • Memory leaks in long-running processes
  • • Thread safety considerations
Debugging and Profiling
# Enable detailed profiling
session_options = onnxruntime.SessionOptions()
session_options.enable_profiling = True

session = onnxruntime.InferenceSession(
    "model.onnx", 
    sess_options=session_options,
    providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)

# Run inference
outputs = session.run(None, inputs)

# Analyze performance profile
prof_file = session.end_profiling()
print(f"Profile saved to: {prof_file}")

# Memory usage tracking
import tracemalloc
tracemalloc.start()

# Your inference code here
outputs = session.run(None, inputs)

current, peak = tracemalloc.get_traced_memory()
print(f"Current memory usage: {current / 1024 / 1024:.1f} MB")
print(f"Peak memory usage: {peak / 1024 / 1024:.1f} MB")

Future Outlook: ONNX and Audio AI

The convergence of ONNX standardization and audio AI represents a pivotal moment for the industry. As models become more complex and deployment requirements more demanding, the gap between research and production continues to widen. ONNX Runtime bridges this gap, enabling teams to deploy state-of-the-art audio models at scale.

🚀 Emerging Trends

  • WebAssembly targets for browser-based audio processing
  • Neural Processing Units optimizations for edge inference
  • Mixed-precision training with FP16/BF16 support

🔮 Industry Impact

  • Democratization of advanced audio AI capabilities
  • Faster innovation cycles from research to market
  • Cross-platform audio applications at scale

Essential Resources

Continue Reading

Next Article
From U-Net to Transformers: The Architecture Evolution of Music Source Separation
Explore how architectural innovations from computer vision and NLP have revolutionized audio separation, from convolutional networks to attention mechanisms.